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ABSTRACT 
Potential users of audio production software, such as audio 
equalizers, may be discouraged by the complexity of the interface. 
We describe a system that simplifies the interface by quickly 
mapping an individual’s preferred sound manipulation onto 
parameters for audio equalization. This system learns mappings 
by presenting a sequence of equalizer settings to the user and 
correlating the gain in each frequency band with the user’s 
preference rating. Learning typically converges in 25 user ratings 
(under two minutes). The system then creates a simple on-screen 
slider that lets the user manipulate the audio in terms of the 
descriptive term, without need to learn or use the parameters of an 
equalizer. Results are reported on the speed and effectiveness of 
the system for a set of 19 users and a set of five descriptive terms.  

Categories and Subject Descriptors 
H.5.2 [User Interfaces]: Auditory (non-speech) feedback  

General Terms Algorithms, Experimentation, Human 
Factors. 
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1. INTRODUCTION 
Software tools are widely used in music recording and production. 
While these tools are powerful, they are also complex, with user 
interfaces that vary from one maker to another. Since the tools are 
complex and interfaces vary, many potential users may be 
discouraged from using this software. In this paper, we focus on 
audio equalizers. These tools affect the timbre and audibility of a 
sound by boosting or cutting the amplitude in restricted regions of 
the frequency spectrum. They are widely used for mixing and 
mastering audio recordings. Many have complex interfaces 
(Figure 1) that lack clear affordances and are daunting to 
inexperienced users. 

Musicians unable or unwilling to learn audio production tools, 
such as equalizers, typically hire expert recording engineers to 
manipulate the interfaces. When a musician uses language to 
describe the desired change to an engineer a significant bottleneck 
can arise: they may not agree on the meaning of the words used. 
While the physical correlates of some commonly used adjectives 
for sound show considerable agreement across listeners (loud/soft, 
high/low pitch), the physical correlates for words describing 
timbre have been shown to vary between individuals and between 
groups [1, 2, 3]. For instance, English speakers from the UK have 
been shown to disagree with English speakers from the USA on 
the acoustical correlates to the words “warm” and “clear” [2].  

 
Figure 1. A software audio equalizer 

Further complicating the use of language, the same equalizer 
adjustment might lead to the use of different descriptors 
depending on the spectrum of the sound source. For example, a 
boost to the midrange frequencies might “brighten” a sound with 
energy concentrated in the low-frequencies (e.g., a bass guitar), 
but might make a more broadband sound (e.g., a piano) appear 
“tinny.” Thus, mapping words to equalization settings may need 
to happen on a case-by-case basis. 

We have developed a system to quickly map an individual’s 
descriptive terms for sound (e.g., “tinny” or “warm”), onto 
equalization settings. This system learns mappings on a case-by-
case basis and learning typically converges in roughly 25 
interactions with the user (under two minutes). The system then 
makes a controller to manipulate audio in terms of the learned 
descriptor. This bypasses the bottlenecks created by the 
complexity of the interface and by the individual variation in 
descriptive terms. 
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2. RELATED WORK 
There have been recent attempts to directly map equalizer 
parameters to commonly used descriptors using a fixed mapping 
[e.g., 4, 5]. We are unaware, however, of prior work to quickly 
and dynamically individualize these mappings. 

Prior work on learning a listener’s preference on a case-by-case 
basis has been primarily applied to setting the equalization curve 
of a hearing aid. Perhaps the most studied method is the modified 
simplex procedure [e.g., 6, 7]. In this procedure, the listener 
makes a series of paired preference judgments that differ in the 
gain of a low or high frequency channel. While this procedure can 
be relatively quick [8], the range of potential equalization curves 
explored is quite small. Although this procedure could 
theoretically be expanded to include more channels, the amount of 
user feedback required would be prohibitively large and time-
consuming.  

Our approach to learning equalization preferences is reminiscent 
of correlation-based techniques used in psychophysics [e.g., 9, 10, 
11] that estimate the relative perceptual importance of stimulus 
features by computing how strongly modifications to that feature 
correlate with some user-generated variable.  

3. OUR APPROACH 
The overview of our approach is as follows:  

1. The user selects an audio file, and a descriptor (e.g. “warm” 
or “tinny”). 

2. We process the audio file once with each of N probe 
equalization curves, making N examples. (Section 3.1) 

3. The user rates how well the each example sound 
exemplifies the descriptor. (Section 3.2) 

4. We build a model of the descriptor, estimating the effect of 
each frequency band on user response by correlating user 
ratings with the variation in gain of each band over the set 
of examples. (Section 3.3).  

5. The system presents a new controller to the user (e.g. a 
slider) that controls filtering of the audio, based on the 
learned model. (Section 3.3) 

3.1 Building the probe EQ curve set 
To modify the spectrum, the sound is first passed through a bank 
of 40 bandpass filters designed to mimic characteristics of the 
human peripheral auditory system [12]. Center frequencies of the 
filters are spaced approximately evenly on a perceptual scale [13] 
from 20 Hz to 20 kHz. Next, a gain value is applied to each 
frequency channel according to a trial-specific probe equalization 
curve. Finally, the channels are summed. The audio is then 
normalized so each presentation has same RMS amplitude.  

Each probe equalization curve is created by concatenating 
Gaussians functions in the space of the 40 channels, with random 
amplitudes ranging from -20 to 20 dB, and randomly chosen 
center channels and bandwidths. Each curve is composed of 
between 2 and 8 Gaussians, each with a width of 5 to 20 channels. 

To ensure the set of equalization curves has a wide range of 
within-channel gains, and a similar distribution of gains across 
channels, we first compute a library of 1000 random curves. The 
initial probe equalization curve is randomly selected from the 

library. Once a curve is selected, it is removed from the library. 
We choose the subsequent probe curves to maximize the across-
channel mean of the within-channel standard deviation of gains. 
At the same time we minimized the across-channel standard 
deviation of within-channel inter-quartile ranges.  

3.2 User rating 
For each example used to train the system, the user hears the 
audio modified by a probe equalization curve. The user moves an 
on-screen slider (Figure 2) to indicate the extent to which the 
current sound exemplifies the current descriptor. Values  range 
from -1: “very-opposite”, to 1: “very.”  

 

Figure 2. The slider provided for user feedback. 

3.3 Correlating user feedback to audio 
We use listener evaluations of the probe curves to compute a 
weighting function that represents the influence of each frequency 
channel in capturing the descriptive word. Given N evaluations, 
there are N two-dimensional data points per channel. For each 
point, the gain applied to the channel forms the x-coordinate and 
the listener rating of how well the sound exemplified the 
descriptor is the y-coordinate (Figure 3 A-C). We reason that the 
extent to which a channel influences the perception of the 
descriptor will be reflected in the steepness of the slope of a line 
fit to this data. We therefore compute the slope of the regression 
line fit to each channel’s data. 

 
Figure 3. A learned weighting function for the 

stimulus/descriptor combination of guitar/tinny. 



Examples of these regression lines calculated for a run of 75 user 
evaluations are plotted for three channels in insets A through C of 
Figure 3. The channels represented in Figures 3A and 3B weigh 
heavily on the descriptor, albeit in opposite directions, while the 
channel represented in Figure 3C has little weight on the 
descriptor. Following the terminology used in psychophysics, the 
array of regression line slopes across all channels will be referred 
to as the weighting function (Figure 3D, the main figure). In all 
cases the weighting function was normalized by the slope with the 
largest absolute value.  

Once the weighting function is learned, a new on-screen slider is 
provided. Slider position determines the scaling of the weighting 
function. The spectrum of the sound is shaped by the weighting 
function multiplied by a value between -20 (“very opposite”) and 
20 (“very”). Thus, the maximum boost or cut for any channel 
ranges from -20 to 20 dB.  

4. EXPERIMENTAL VERIFICATION 
Nineteen listeners (seven female) participated in the experiment. 
Average age was 28.3 years. All reported normal hearing and 
were native English speakers. Eleven listeners reported at least 
five years of experience playing a musical instrument. Seven 
reported at least four years experience using audio equipment.  

The stimuli were five short musical recordings of solo 
instruments: a saxophone, a female singer, a drum set, a piano, 
and an acoustic guitar. Each five-second sound was recorded at a 
local recording studio at a sampling rate of 44.1 kHz and bit depth 
of 16.   

4.1 Procedures 
Listeners were seated in a quiet room with a computer that 
controlled the experiment and recorded listener responses. The 
stimuli were presented binaurally over headphones and listeners 
were allowed to adjust the overall sound level. Each listener 
participated in a single one-hour session. For this experiment, 
stimulus/descriptor pairs were chosen for listeners. Each session 
was grouped into five runs, one for each stimulus/descriptor 
combination (e.g., saxophone/bright). The descriptors “bright”, 
“dark”, and “tinny” were each tested once. The descriptor “warm” 
was tested twice. For all listeners, the descriptor “warm” was 
always tested with the recordings of the drum set, and the female 
singer. These pairings were chosen to examine listener and sound-
source differences, though that analysis is not reported in this 
paper. The remaining three descriptors were randomly assigned to 
the remaining recordings. The five runs were tested in a randomly 
determined order.  

In each run, there were 75 trials (ratings), divided into three sets 
of 25. Two of the sets of trials were comprised of an identical set 
of 25 probe equalization curves. By comparing the two responses 
to the same curves, we could evaluate the consistency in listener 
responses. The other third was comprised of a unique set of 
curves. The three sets of trials were tested in a random order in 
each run.  

4.2 Results 
To assess the quality of the weighting function, we compared 
machine-generated ratings to listener ratings. Once a weighting 
function for a stimulus/descriptor pair was learned, a machine 
rating for each example was generated by calculating the 
correlation coefficient between the weighting function and the 

probe equalization curve used on that example. We then examined 
the correlation between the machine ratings and the listener 
ratings. The left box plot of Figure 4 is the distribution of machine 
vs. listener correlation coefficients over all 95 runs (nineteen 
listeners, five runs per listener). The machine ratings were 
significantly and positively correlated (p < 0.05) with the listener 
ratings for all runs, and the median correlation coefficient was 
0.72. The middle box plot in Figure 4 shows the distribution of 
correlation coefficients when two responses from the same 
listener to the same probe equalization curve are correlated to 
each other (median r = 0.69). The similarity of these two 
distributions suggests the weighting function may predict listener 
ratings as accurately as prior ratings of the same stimulus by the 
same listener.  

 
Figure 4. Weighting function quality. 

Once the weighting function was learned for each 
sound/descriptor pair, the listener was provided a slider to modify 
the sound, where position determines the scaling of the weighting 
function which is then applied as an equalization curve. After 
listeners heard sounds modified by the scaled versions of the 
weighting function, they indicated how well the weighting 
function learned their intended meaning by placing a new on-
screen slider in the range -1 (learned the opposite) to 1 (learned 
perfectly). The distribution of those values is plotted in the 
rightmost box plot of Figure 4. The median value was 0.75, 
indicating the weighting function typically captured user 
understanding of the descriptor. 

To determine the number of listener responses required to reach 
asymptotic performance, we computed the weighting function 
after each of the 75 user ratings in a trial. We then used the 
weighting function generated after each trial to create machine 
ratings to all 75 trials, and correlated those ratings with the 
listener ratings. Figure 5 shows the distribution of all machine vs. 
listener correlation coefficients plotted as a function of the 
number of responses used to generate the weighting function. The 
bottom of the grey area indicates the 25th percentile, the top of the 
grey area indicates the 75th percentile, and the black line is the 
50th percentile (the median). Visual inspection indicates that the 
weighting function reached asymptotic performance at around 25 
trials. The higher correlation coefficients appear to asymptote 
earlier (~20 trials) than the lower correlation coefficients (~30 
trials). 



 

Figure 5. Correlation of the learned function to user responses 
as a function of the number of responses. 

5. CONCLUSIONS 
In this paper, we describe a system that quickly maps individual 
users’ descriptive terms onto settings for audio production 
software. This bypasses the bottleneck created by the complexity 
of many interfaces, letting users manipulate audio in their own 
terms. We described an efficient and effective way to learn a 
user’s subjective preference for an equalization curve and to build 
a controller. Listeners indicated that the learned functions were 
generally successful in capturing their intended meaning of a 
given descriptor. Listener ratings were well predicted by the 
similarity between a given probe curve and the computed 
weighting function. Indeed the weighting function could predict a 
user response nearly as well as a different user response to the 
same curve. This observation implies that noise in user responses 
may limit the performance of this procedure. To address this, in 
future work, several sliders with unique play buttons will be 
displayed simultaneously (rather than in succession) during the 
rating stage. This interface will allow listeners to make 
comparisons between curves, ensuring that the relative ratings 
match their perception.  

This approach promises to be a useful tool in the recording studio 
for users who are unfamiliar with the equalizer interface, or where 
the musician’s language does not communicate the desired change 
to an engineer. An equalizer plug-in could generate probe curves 
to be rated by the novice, and that plug-in would return a 
weighting function that could then be scaled to the desired extent. 
This algorithm could also be helpful for experienced users who 
would prefer to avoid directly adjusting equalizer parameters. The 
system’s learning asymptotes after roughly 25 examples are rated 
by the user. Since examples were rated in 3.7 seconds, on average, 
a personalized controller could be built after less than two minutes 
of user interaction. This is a reasonable amoutn of time to be used 
in music production .  

Future work includes applying a similar approach to other audio 
tools, (such as reverberation), more user studies and development 
of a plug-in version of this software for use in existing 
commercial audio production suites. 
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