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ABSTRACT

A simple but efficient stereo reverberation control is devel-
oped to simulate reverberation. Inspired from previous clas-
sic studies, the reverberator is built using simple digital fil-
ters, including comb filters and all-pass filters commonly used
for digitally simulating reverberation. The digital reverbera-
tor incorporates low-pass filters to simulate the air and walls
absorption effect, gains to control the wet/dry effect and a de-
lay difference parameter to introduce a difference between the
channels. A total of 21 digital parameters define the whole re-
verberation control.

Five measures commonly used to characterize reverber-
ation are defined from the impulse response, and formulae
are derived to estimate values of these reverberation mea-
sures in terms of the digital parameters for the reverberator.
Dependence relations between the digital parameters lead to
the need of only five independent parameters to control the
whole reverberator, so that the measures can be redefined as
five functions of five independent parameters. This mapping
parameters-measures is used to let the reverberator to be con-
trolled through the measures of the reverberation, in other
words the reverberator can generate a reverberation effect
based on desired characteristics of the reverberation itself.

Index Terms— reverberation, digital reverberator, comb
filter, all-pass filter, Schroeder, Moorer, reverberation time

1. INTRODUCTION

1.1. The Reverberation Effect

Reverberation is defined as the persistence of sound in a par-
ticular space after the original sound is removed [1]. A rever-
beration is created by the reflections of a sound in an enclosed
space causing a large number of echoes to build up and then
slowly decay as the sound is absorbed by the walls and air [2].
It is a common natural phenomenon most noticeable in large
spaces, such as concert halls and churches.

The reflections caused by the reverberation modify the
perception of the sound, changing its loudness, timbre and

spatial characteristics [3], [4]. The issue of how reverberation
affects the timbral perception of the sound has been rarely
addressed [4], [5]. Most of the studies deal with reverbera-
tion in the context and for the purpose of auralization or room
simulation [4], [6]. Furthermore, the authors seem often to
prefer the use of convolution reverberation for modelling the
acoustics of a room [4], [7], [8].

Based on limits of perception, the impulse response of
a reverberation can be divided into two segments: the early
reflections and the late reverberation. The early reflections
are the relatively sparse first echoes that are directly related to
the shape and size of the space, as well as the position of the
source and the listener in the space, and thus have a key role
in the subjective spatial impression of the room. They arrive
after the direct sound and last generally about 50 to 80 msec
[8]. The late reverberation is the remainder of reverberation
decay, the collection of many reflected sounds which blend
and overlap. It is more random and difficult to relate to the
physical characteristics of the space, instead it gives statistical
impression of room, independent of the source and receiver
positions. Fig. 1 represents a typical impulse response of a
reverberation.

Fig. 1. Typical impulse response of a reverberation.



1.2. Simulating Reverberation

Reverberation tools are typically used to simulate the effect
of a sound being placed in a space and are commonly used
on commercial audio recordings. A number of systems have
been developed to simulate reverberation. The first systems
used physical equipments to produce the reverberation effect.
The chamber reverberator uses a real physical space as a nat-
ural echo chamber, where a loudspeaker would play a sound
for a microphone to pick it up again, including the reverber-
ation effect of the space. The plate reverberator system uses
an electromechanical transducer to create vibration in a large
plate of sheet metal, then a pickup captures the vibrations on
the plate and the result is outputted as an audio signal. The
spring reverberator uses a metal spring with a transducer at
one end and a pickup at the other to create and capture vibra-
tions within the spring.

The advances of signal processing techniques enabled the
appearance of digital reverberators, easier to manipulate and
offering enhanced possibilities in simulating reverberation.
Since reverberation is essentially caused by a very large num-
ber of echoes, simple digital signal processors can use multi-
ple feedback delay circuits to create a large, decaying series
of echoes. More advanced digital reverberators can now sim-
ulate the time and frequency domain responses of real rooms
based upon the room dimensions, air and walls absorption and
other properties. Typical digital audio editors incorporate one
or several digital tools to create reverberation. For example,
Fig. 2 shows the interface of the Platinumverb reverberation
tool available in the popular Logic Audio production suite.

Fig. 2. Logic Audio’s Platinumverb interface.

In audio signal processing, another method based on the
mathematical convolution operation is also used for digitally
simulating the reverberation of a physical or virtual space.
The convolution reverberation uses the impulse response of

the space being modelled to convolve it with the incoming
audio signal to be processed to simulate the reverberation ef-
fect of that space [4], [7], [8]. Some softwares such as Al-
tiverb proposes to use convolution reverberation to simulate
the reverberation of particular rooms or concert halls.

1.3. The approach

In this study, we have decided to develop a digital reverber-
ator based on digital filters to simulate reverberation. Digi-
tal reverberators are easier to manipulate through their digital
parameters, they need less computation and storage than con-
volution reverberation methods, and give satisfactory sound
quality [9].

Inspired from previous classic works done on reverbera-
tion simulation, we have decided to build a simple but effi-
cient stereo reverberation control, composed of simple digi-
tal filters typically used in simulating reverberation, such as
the comb filter and the all-pass filter. The reverberator in-
corporates also a low-pass filter to simulate the air and walls
absorption effect, a gain parameter to control the wet/dry ef-
fect, and a delay difference parameter to introduce a differ-
ence between the channels. Dependence relations between
all the digital parameters let the reverberator to be eventually
controlled using only five independent parameters.

Yet, we would like to manipulate the reverberator and
generate reverberation using meaningful and not too abstract
controls, such as characteristics of the desired reverberation
effect. Therefore, five measures of the reverberation, defined
from the impulse response and commonly used to character-
ize reverberation, are derived and mapped to the parameters
of the digital reverberator, such that the reverberator can be
finally controlled through those reverberation measures.

The paper is organized as follows. Section 2 introduces
three digital filters commonly used for simulating reverber-
ation and section 3 presents three classic models of digital
reverberators. Based on those digital filters and inspired from
those previous works, a reverberator is described and devel-
oped in section 4. Five reverberation measures are defined
and mapped to the parameters of the reverberator in section 5.
Finally, conclusion and perspectives are given in section 6.

2. DIGITAL FILTERS FOR REVERBERATION

In this section, three digital filters commonly used for sim-
ulating reverberation are introduced and analyzed, in time
through their impulse response and in frequency through their
transfer function.

2.1. The Comb Filter

Looking at the impulse response of Fig. 1, an immediate first
simple digital model of reverberation would be an infinite se-
ries of delta functions exponentially decaying. A digital fil-



ter with an impulse response of that kind exists and is called
comb filter [10].

Fig. 3 and 4 show respectively the scheme of the comb fil-
ter and its impulse response. The comb filter is a simple delay
d with a feedback of gain g. As we can notice on its impulse
response, the delay factor d determines the echo spacing.

Fig. 3. Scheme of the comb filter.

Fig. 4. Impulse response of the comb filter.

Eq. 1 and 2 represent respectively the output and the
transfer function of the comb filter.

y[n] = x[n− d] + g y[n− d] (1)

H(z) =
Y (z)
X(z)

=
z−d

1− g z−d (2)

Looking at the impulse response of Fig. 4, a discrete tem-
poral function for the comb filter can be deduced. Eq. 3 rep-
resents the amplitude of the comb filter in function of the dis-
crete time.

A[n] = g
n
d −1 for n = d, 2d, ... (3)

The comb filter is however too simplistic to model real-
istic reverberation. First, the impulse response in Fig. 1 has
equally spaced peaks, whereas natural reverberation has in-
creasingly dense peaks with time. Furthermore, its frequency
response periodically drops to a local minimum (notch), and
periodically rises to a local maximum (peak), resulting in a
comb-like shape (hence the name). This introduces a col-
oration which results in a kind of “ringing” noise in the filter.

2.2. The All-pass Filter

An alternative to solve this last problem would be to use an
all-pass filter [10]. As its name indicates, the all-pass fil-
ter passes all frequencies, resulting in a flat magnitude fre-
quency response. However, it does affect the phase of the
signal which is not flat, but this is not really a problem since
the human auditory system is not very sensitive to phase.

Fig. 5 and 6 show respectively the scheme of the all-pass
filter and its impulse response. As we can notice, the all-
pass filter is like a comb filter with a feedforward of gain −g

around the delay. And like the comb filter, the delay d de-
termines the echo spacing. Note that the first peak of the im-
pulse response of the all-pass filter is negative. In order the
first peak to fit in with the others in terms of the exponential
decay, we need 1− g2 = g2 that is to say g = 1√

2
.

Fig. 5. Scheme of the all-pass filter.

Fig. 6. Impulse response of the all-pass filter.

Eq. 4 and 5 represent respectively the output and the
transfer function of the all-pass filter.

y[n] = x[n− d]− g x[n] + g y[n− d] (4)

H(z) =
Y (z)
X(z)

=
−g + z−d

1− g z−d (5)

Looking at the impulse response of Fig. 6, a discrete tem-
poral function for the all-pass filter can be deduced. Eq. 6
represents the amplitude of the all-pass filter in function of
the discrete time.

A[n] =

{
− g for n = 0

(1− g2)g
n
d −1 for n = d, 2d, ...

(6)

Listening to the results, we can notice that this filter has a
more pronounced reverberation effect. This may be due to the
first negative peak, so the direct sound will be out of phase.
However, the all-pass filter has still equally spaced peaks, and
it is still a too simple model of reverberation.

2.3. The Low-pass Filter

Besides of being too simplistic models, the filters described
above do not take into account the tendency of the reverbera-
tion to attenuate higher frequencies, corresponding to the air
and walls absorption effect. To solve this problem, low-pass
filter is commonly incorporated to the other filters.

Fig. 7 and 8 show respectively the scheme of the low-pass
filter and its impulse response. A simple first-order low-pass
filter with a gain g is sufficient to get satisfactory results.



Fig. 7. Scheme of the low-pass filter.

Fig. 8. Impulse response of the low-pass filter.

Eq. 7 and 8 represent respectively the output and the
transfer function of the low-pass filter.

y[n] = (1− g) x[n] + g y[n− 1] (7)

H(z) =
1− g

1− g z−1
(8)

Looking at the impulse response of Fig. 8, a discrete tem-
poral function for the low-pass filter can be deduced. Eq. 9
represents the amplitude of the low-pass filter in function of
the discrete time.

A[n] = (1− g) gn for n = 0, 1, 2, ... (9)

The incorporation of low-pass filter helps to simulate a
more “natural” reverberation, avoiding “unnatural metallic”
sounding. However, even if the results are pretty good, using
a single digital filter, even enhanced with a low-pass filter, is
not enough to get a “realistic” reverberation.

3. CLASSIC DIGITAL REVERBERATORS

In this section, three classic reverberators based on the digi-
tal filters described in section 2 are presented and analyzed.
Those digital reverberators are the first simple but efficient
models of reverberation that have been proposed, and most of
the work done on digital reverberation simulation is based on
those models.

3.1. Schroeder’s Reverberators

By combining several of the digital filters described in sec-
tion 2, it is possible to achieve a more “natural” reverberation.
Schroeder first proposed to use five all-pass filters in series
with delay times that are incommensurate [10]. Each all-pass
expands each impulse from the previous stage into an entire
infinite all-pass impulse response. And as a series of all-pass
filters is an all-pass filter, the whole unit still produces a “col-
orless” reverberation. Respectively, delay times of 100, 68,

60, 19.7 and 5.85 msec and gain values of 0.7, −0.7, 0.7, 0.7
and 0.7 were used.

Later, Schroeder arranged his design by using four comb
filters in parallel, followed by two all-pass filters in series.
This design, perhaps the most popular, is known as Schroeder
Reverberator [11]. The parallel comb filters are supposed to
simulate the complex modal response of a room by adding
echoes together and reduce the spectral coloration. The range
of delay times of the comb filters is between 30 and 50 msec
and relatively prime to one another in order to avoid at maxi-
mum overlapping echoes. Typical values are 29.7, 37.1, 41.1
and 43.7 msec. Note that the delay and the gain factors of a
filter combine to determine the reverberation time (see section
5.1) of that filter. In Schroeder Reverberator, the reverberation
times of the comb filters, which control the reverberation time
of the entire unit, should be set equal. The corresponding gain
values can then be easily deduced.

As for the all-pass filters, they allow to increase the echo
density (see section 5.2) produced by the comb filters in or-
der to give a more “natural sounding” reverberation. Typical
values are respectively 96.83 and 32.92 msec for the delay
times, and 5 and 1.7 msec for the reverberation times. Fig. 9
represents the scheme of Schroeder Reverberator.

Fig. 9. Schroeder’s second reverberator, commonly known as
Schroeder Reverberator.

3.2. Chamberlin’s Reverberator

Similarly to Shroeder’s first reverberator, Chamberlin used
five all-pass filters in series, with the last two filters doubled
in parallel to get a stereo output in order to simulate a stereo
reverberation [12]. He also used un gain parameter to control
the overall gain of the reverberation, and finally summed the
outputs of the stereo reverberation process to the stereo direct
sound.

The delays parameters should be approximately exponen-
tially distributed but in all cases must be a prime number of
samples. As a first approximation, Chamberlin proposed to
give the first stage the longest delay, which is in the 50-msec
range, and then successively multiply it by a constant some-
what less than 1. He precised that the last delay, the shortest
one, should not be much less than 10 msec if a distant, hollow
sound is to be avoided. As for the gain values, they tend to be
similar for all stages, although they should not be identical.
Chamberlin explained that, for practical purposes, the rever-



beration time of a cascade of sections is equal to the longest
section time.

Finally, to simulate a stereo reverberation, a subtle differ-
ence was introduced between the parameters of each channel
to insure that the reverberation will be perceived as coming
from all directions, while the original signal retains its normal
directivity. Fig. 10 represents the scheme of Chamberlin’s re-
verberator.

Fig. 10. Chamberlin’s reverberator.

3.3. Moorer’s Reverberator

Moorer have studied Schroeder’s previous work and came
with a new digital reverberator [13]. He proposed to use six
comb filters in parallel followed by a single all-pass filter. To
simulate the attenuation of higher frequencies by the air, he
incorporated a first-order low-pass filter in the loop of each
comb filter.

The delay values of the comb filter seem to work well
when distributed linearly over a ratio of 1:1.5, with a recom-
mended range of 50 to 80 msec. Moorer precised that the
shortest delay can be reduced to 10 msec without gross degra-
dation. The delay lengths in samples should be set to the clos-
est prime numbers to prevent exactly overlapping echoes. The
gain values of the comb filters are obtained from the gain val-
ues of the low-pass filters and the corresponding reverberation
times which are all set to be equal to the overall reverberation
time.

As for the all-pass filter, it seems to be sensitive to back-
ground noise with too short delay values and seems to pro-
duce an audible repetition period with any delay longer than
6 msec. As a consequence, the delay time of the all-pass fil-
ter is pretty well limited to 6 msec. As for the gain value,
0.7 seems to work well. Fig. 11 represents the scheme of
Moorer’s reverberator.

Following an idea reported by Schroeder, Moorer also
considered to directly simulate the N early echoes by a N-
tap finite impulse response filter section, and simulate the
late response with a standard digital reverberator such as the
one he proposed, in order to artificially reproduce in a more

Fig. 11. Moorer’s reverberator.

realistic way the geometry of real rooms. With his model,
Moorer achieved a good-sounding, smooth artificial reverber-
ation which has eliminated some of the problems related to
earlier digital reverberators, which used to exhibit “fluttery”
or “metallic” ringing.

Moorer finally noted that recirculating delay reverberators
have a characteristic sound affecting the timbre, and referred
to a conceivable further study where the physical characteris-
tics of the sound could be correlated with the subjective per-
ception of the sound.

4. THE DEVELOPED REVERBERATOR

In this section, we describe the digital reverberator we have
decided to develop, based on the digital filters introduced in
section 2 and inspired from the previous works presented in
section 3. A first description of the reverberator is given, fol-
lowed by a specification including dependence relations be-
tween the parameters and ranges of values. Finally, possible
other improvements are presented, including other enhanced
classic digital reverberators.

4.1. Description

We have developed a digital reverberation unit, mostly in-
spired by Moorer’s work [13]. The reverberator is composed
of a block of six comb filters in parallel used to simulate the
complex modal response of a room by adding echoes together.
Each comb filter is characterized by two parameters, a delay
factor dk and a gain factor gk (k = 1..6). The reverberator



takes as input a stereo sound whose average over its channels
is sent to each comb filters.

The outputs of the comb filters are summed and sent to an
all-pass filter used to increase the echo density (see section
5.2) produced by the comb filters and doubled into two chan-
nels to simulate a more “natural sounding” reverberation in
stereo. Similarly, the all-pass filter at each channel is charac-
terized by a delay factor d7, respectively d8, and a gain factor
g7, respectively g8.

To simulate air and walls absorption effects, a single first-
order low-pass filter defined through its cut-off frequency fc
is added after the all-pass filter at each channel. Following
the low-pass filter, a gain parameter G allows to control the
wet/dry effect of the reverberation at each channel. A small
difference m is finally introduced between the delays of the
all-pass filters to insure a difference between the channels for
the reverberation. At the end, the outputs of the reverberation
process are added to the corresponding channels of the stereo
direct sound. Fig. 12 shows the whole reverberation unit.

Fig. 12. The digital reverberation unit.

4.2. Specification

There are then six delay parameters and six gain parameters
controlling the block of parallel comb filters, in other words
12 control parameters. According to Moorer, the delay values
are distributed linearly over a ratio of 1:1.5. The first comb
filter is defined as having the longest delay d1, so the delays
of the other comb filters can be deduced from d1. Based on
previous studies (see section 3.3) and our own experiments,
the range of values for the delays of the comb filters is de-
fined between 10 and 100 msec. This range is extended to the
values of d1. Furthermore, according to Moorer, the rever-
beration times (see section 5.1) of all the comb filters are set
to be equal. Therefore, the gain values for the comb filters,
can all be deduced from the reverberation time and the delay
value of the first comb filter. In particular, the gain factor of
the first comb filter g1 represents the smallest gain and has a
non-inclusive range of values defined between 0 and 1. Al-
though the comb filter gives a non-flat frequency response, a

sufficient number of comb filters in parallel with equal val-
ues of reverberation time helps to produce an approximated
flat frequency response. In the end, only two parameters are
needed to control the whole block of parallel comb filters: the
delay factor d1 and the gain factor g1 of the first comb filter.

Note that the direct sound is assumed to be at time 0, so
to avoid the first peak of the reverberation to occur at time 0,
the original comb filter of section 2.1 is delayed of d samples
(the kth comb filter is delayed of dk samples). As a conse-
quence, the first peak of the impulse response of the reverber-
ation unit occurs at time d6, the shortest delay value among
the six parallel comb filters. Eq. 10 and 11 represent respec-
tively the transfer function and the discrete temporal function
of the new delayed kth comb filter.

Hk(z) =
gk z

−dk

1− gk z−dk
(10)

Ak[n] = gk
n
dk for n = dk, 2dk, ... (11)

According to Moorer, the original delay factor da of the
all-pass filters is fixed to 6 msec. Since a difference of m is
added between the delays of the all-pass filters at each chan-
nel, the delays become respectively d7 = da + m

2 for the
left channel and d8 = da − m

2 for the right channel, so that
m = d7 − d8. Therefore, the range of values for m is de-
fined between 0 and 12 msec (non-including). Note that, as
explained in section 2.2, it is assumed that all-pass filters do
not introduce coloration. However, this assumption is valid
from a perceptual viewpoint only if the delay line of the all-
pass filter is much shorter than the integration time of the ear,
which is about 50 msec [14]. For practical purposes, the gain
factor of the all-pass filters is fixed to ga = 1√

2
for both chan-

nels. In other words, g7 = g8 = ga. Thus, as explained in
section 2.2, the impulse response of the all-pass filter shows
a convenient whole exponential decay, which would also help
to simplify further computations (see section 5). The discrete
temporal function of the all-pass filter in Eq. 6 is then reduced
to the following Eq. 12 (in absolute value).

|Aa[n]| = ga
n
da

+1 for n = 0, da, 2da, ... (12)

Therefore, a single parameter control the all-pass filters at
each channel: the difference between the delay values m.
Note that to prevent exactly overlapping echoes, the delay
values for the comb filters and the all-pass filters are set to
the closest inferior prime number of samples.

For practical purposes, the low-pass filter following the
all-pass filter at each channel is defined from its cut-off fre-
quency parameter fc [15]. fc has a non-inclusive range of val-
ues defined between 0 and half of the frequency sampling fs.
Eq. 13 represents the gain gc of the low-pass filter (see sec-
tion 2.3) computed from the corresponding cut-off frequency
fc and frequency sampling fs.

gc = 2− cos
(

2π
fc
fs

)
−

√(
cos
(

2π
fc
fs

)
− 2
)2

− 1 (13)



As for the gain parameter G following the low-pass filter at
each channel, it is a simple temporal multiplicative constant
whose range of values is defined between 0 and 1.

In summary, a total of only five independent digital pa-
rameters are needed to control the whole reverberation unit
and generate reverberation (The other parameters can be de-
duced from them according to the relations described above):

1. The longest delay factor, of the first comb filter: d1

2. The smallest gain factor, of the first comb filter: g1

3. The delay difference between the all-pass filters at each
channel: m

4. The cut-off frequency of the low-pass filters: fc

5. The wet/dry gain parameter: G

4.3. Other Improvements

Although the results are convincing reverberation effects,
other improvements can still be made to produce an even
more realistic reverberation. More filters can be added to
achieve a greater echo density, or complex structures can be
used to obtain a more “natural” sounding.

For example, Smith proposed the Digital Waveguide Net-
works [16]. The idea is to build a network of bidirectional
delay lines simulating wave propagation in a duct capable of
producing the desired early reflections and a diffuse, suffi-
ciently dense late reverberation. Another example is the Feed-
back Delay Networks proposed by Jot and Chaigne [9]. They
constitute a generalization of comb filters, where the number
of feedback paths have been increased using matrices. A last
example is the Late Reverberator of Gardner which uses the
idea of nested all-pass filters [6].

Although, those improvements allow to achieve a more
realistic reverberation, they also lead to more complex rever-
berators with multiple parameters, more complicated to ma-
nipulate.

5. THE REVERBERATION MEASURES

In this section, five measures commonly used to characterize
reverberation, and defined from the impulse response of the
reverberator are presented. Because those measures are more
meaningful and less abstract representations of the reverbera-
tion, they are mapped to the control parameters of the rever-
berator, so that the reverberator can eventually be controlled
using the measures of the reverberation. Formulae are derived
from the definitions of the measures in terms of the parame-
ters of the digital filters, and the reverberation measures are
eventually mapped to the five independent parameters defined
in section 4.2.

5.1. The Reverberation Time

The Reverberation Time, T60, is defined as the time in seconds
required for the reflections of a direct sound to decay by 60
dB below the level of the direct sound [17].

Note that the loudest crescendo for most orchestral music
is about 100 dB and a typical room background level for a
good music-making area is about 40 dB, thus the standard
reverberation time can be seen as the time for the loudest
crescendo of the orchestra to decay to the level of the room
background [17].

The reverberation time for the comb filter and the all-pass
filter defined in section 4 can be easily computed from their
discrete temporal function, respectively Eq. 11 and Eq. 12,
using the definition of the reverberation time above. Eq. 14
and 15 represent respectively the reverberation time for the
comb filter and the all-pass filter. Note that, for both comb
and all-pass filters, if the delay factor and the reverberation
time are given, the gain factor would be easy to deduce.

T60k = dk
log 10−3

log gk
(14)

T60a = da

(
log 10−3

log ga
− 1
)

(15)

The true value of the reverberation time of the reverbera-
tion unit is measured from the impulse response of the rever-
beration process, so without the direct sound at time t = 0.
Basically, the function looks for the last peak which has an
amplitude above 10−3, which corresponds to −60 dB com-
pared to the direct sound. Note that in discrete time, the direct
sound is represented as a Kronecker delta function of ampli-
tude 1. The reverberation time would then be defined as the
next sample to that detected peak, in seconds.

To estimate the reverberation time directly from the pa-
rameters of the reverberator, the impulse response of the
whole reverberation unit needs to be seen as the sum of the
impulse responses of six parallel combinations of one comb
filter, one all-pass filter, one low-pass filter and one wet/dry
gain filter in series, plus the direct sound which does not need
to be considered here since it is not included in the computa-
tion of the reverberation time. For each combination, every
peak of the comb impulse response is expanded into a whole
all-pass impulse response. Note that since prime values of
delay have been used for the comb filters and the all-pass
filters (see section 4), the echoes are assumed not to overlap
(or almost not). The effect of the next low-pass filter can be
approximated as an additional gain of (1− gc) in the impulse
response corresponding to the amplitude gain of the low-pass
filter (see Eq. 8). The amplitude of the impulse response is
further modified by a factor G corresponding to the wet/dry
gain. By making the approximation that the all-pass filter
simply adds an additional gain of ga in the impulse response
corresponding to the gain factor of the all-pass filter, every



parallel combination can finally be seen as simple comb fil-
ter times an overall amplitude gain value of ga (1 − gc) G.
Therefore, an approximation of the reverberation time for ev-
ery parallel combination can be computed from the definition
of the reverberation time of the comb filter in Eq. 14.

The reverberation time for the whole reverberation unit is
finally estimated as the maximum of the reverberation times
of the parallel combinations, as shown in Eq. 16.

T60 = max
k=1..6

dk
log
(

10−3

ga (1−gc) G

)
log gk

 (16)

5.2. The Echo Density

The Echo Density, Dt, is the frequency of occurring peaks at
a certain time t of the impulse response, in other words it is
defined as the number of echoes per second at a time t [18].

For one comb filter or one all-pass filter, the echo density
is independent from the time t and represents the delay value
of the filter. Indeed sections 2.1 and 2.2 have shown that the
delay factor determines the (constant) echo spacing in the im-
pulse response of the filter. For parallel combinations of comb
or all-pass filters, the echo densities add, independently of t.
In the case of two comb and/or all-pass filters in series, the
echoes overlap so that there is approximatively a linear echo
density buildup with time. Eq. 17 shows the estimation of
the echo density for two filters in series with respective delay
factors of dα and dβ .

Dt =
t

dαdβ
(17)

By assuming that the low-pass filter does not introduce
any echo and since the wet/dry gain does not affect the echo
spacing, the echo density of the whole reverberation unit can
be seen as the echo density of six parallel combinations of
one comb filter and on all-pass filter in series, not including
the peak at t = 0 corresponding to the direct sound. There-
fore, the echo density of the whole reverberation unit can be
estimated as follows, in Eq. 18. Note that the echo density
is independent of any gain factor. For practical purposes, the
echo density is computed at time t = 100 msec and defined
as D = Dt.

D =
t

da

6∑
k=1

1
dk

(18)

The true value of the echo density of the reverberation unit
is measured from the impulse response of the reverberation
process, so without the direct sound at time t = 0. Basically,
the function computes the number of peaks from the time 0
till the time t, and divide this number by t to get the number
of peaks per second.

Note that if the echo density is larger than 20-30 echoes
per second, the ear no longer hears the echoes as separate

events, but fuses them into a sensation of continuous decay
[18]. In other words, the early reflections become a late re-
verberation.

5.3. The Clarity

The Clarity, Ct, describes the ratio in dB of the energies in the
impulse response p before and after a given time t [7]. The
definition of Ct in discrete time is given by the following Eq.
19.

Ct = 10 log10

t∑
n=0

p2[n]

∞∑
n=t

p2[n]

(19)

As its name suggests, the clarity can provide indication
of how “clear” the sound is at time t. This time is usually
referred to the arrival of the direct sound or the time when the
early reflections give way to the late reverberation. t is usually
set to 50 msec for speech (C50) and 80 msec for music (C80)
[7].

For practical purposes, the clarity is here computed at time
t = 0, corresponding to the arrival time of the direct sound.
In other words, the clarity represents now the ratio in dB be-
tween the energy of the direct sound and the energy of the
reverberation. Since the direct sound is here represented as a
Kronecker delta function of amplitude 1, the definition of the
clarity becomes the minus of the energy of the reverberation
in dB, and the Eq. 19 is reduced to the following Eq. 20. Note
that the linear clarity (not in dB) is called Definition and can
be represented here simply as the inverse of the energy of the
impulse response.

C = C0 = −10 log10

∞∑
n=0

p2[n] (20)

The true value of the clarity of the reverberation unit is
measured from the impulse response of the reverberation pro-
cess, so without the direct sound at time t = 0, by using the
Eq. 20 above.

To estimate the clarity directly from the parameters of the
reverberator, again the impulse response of the whole rever-
beration unit needs to be seen as the sum of the impulse re-
sponses of six parallel combinations of filters, plus the direct
sound which does not need to be considered here since it is
not included in the computation of the clarity. Since prime
values of delay have been used for the comb filters and the
all-pass filters so that the echoes do not overlap (or almost
not), it can be assumed that the sum of the squared amplitude
of the peaks of the impulse response of the whole reverbera-
tion process is equal to the sum of the squared amplitude of
the peaks of the impulse responses of the parallel combina-
tions summed over all the six combinations. This assumption
is almost not altered by the low-pass filter effect. In other



words, the total energy of the impulse response of the six par-
allel combinations can be considered to be equal to the sum
of the energies of the impulse responses of the combinations.
Furthermore, it can be shown that the total energy of the im-
pulse response of filters in series is equal to the product of the
energies of the impulse responses of the filters. As a conse-
quence, the total energy of the impulse response for the whole
reverberation process can be approximated as a linear combi-
nation of the energies of the impulse responses of the filters
which compose it.

Eq. 21 represents respectively the energies of the impulse
responses for one comb filter, the all-pass filter, the low-pass
filter and the wet/dry gain filter, all computed from their re-
spective discrete temporal functions from section 4. Note that
since the gain factor of the low-pass filter has been fixed to
1√
2

, the energy of the impulse response of the low-pass filter
is equal to 1. Note also that the clarity for each of those filters
can be easily computed from their respective energies of their
impulse responses as follows c = −10 log10e.

ek =
∞∑
n=0

Ak
2[n] =

∞∑
i=1

(gk
2)i =

0<gk<1

gk
2

1− gk2

ea =
∞∑
n=0

Aa
2[n] =

∞∑
j=0

(ga
2)j+1 =

0<ga<1

ga
2

1− ga2
= 1

ec =
∞∑
n=0

Ac
2[n] =

∞∑
l=0

(1− gc)
2(gc

2)l =
0<gc<1

1− gc
1 + gc

eG = G2

(21)
Eq. 22 represents the total energy of the impulse response

of the whole reverberation process, in other words the six par-
allel combinations of one comb filter, the all-pass filter, the
low-pass filter and the wet/dry gain filter in series.

E =
6∑
k=1

(ek ea ec eG) = G2 1− gc
1 + gc

6∑
k=1

gk
2

1− gk2
(22)

The clarity of the whole reverberation unit is finally esti-
mated as the minus of the sum of the energies of the impulse
responses of the six parallel combinations in dB, as shown
in Eq. 23. Note that the clarity is independent of any delay
factor.

C = −10 log10

(
G2 1− gc

1 + gc

6∑
k=1

gk
2

1− gk2

)
(23)

5.4. The Central Time

The Central Time, TC , is the “center of gravity” of the energy
in the impulse response p, defined as follows in discrete time

by Eq. 24 [7].

TC =

∞∑
n=0

np2[n]

∞∑
n=0

p2[n]

(24)

The true value of the central time of the reverberation unit
is measured from the impulse response of the reverberation
process, so without the direct sound at time t = 0, by using
the Eq. 24 above.

To estimate the central time directly from the parameters
of the reverberator, the impulse response of the whole rever-
beration unit needs to be seen as the sum of the impulse re-
sponses of a series formed of the combination of six comb
filters in parallel, the all-pass filter, the low-pass filter and the
wet/dry gain filter, plus the direct sound which does not need
to be considered here since it is not included in the computa-
tion of the central time. Since the echoes do not overlap, the
same assumption made for the clarity is used here, namely
“the square of the sum is equal to the sum of the squares”.
Based on this assumption and by using the definitions of the
clarity in Eq. 23 and the discrete temporal function of the
comb filter in Eq. 11, the central time of the combination of
six parallel comb filters can be deduced as shown in Eq. 25.
Note that for one single comb filter, the central time would be
equal to tCk = dk

1−gk
2 .

tC =

6∑
k=1

∞∑
n=0

nAk2[n]

6∑
k=1

∞∑
n=0

Ak2[n]

=

6∑
k=1

∞∑
i=1

idk(gk
2)i

6∑
k=1

∞∑
i=1

(gk
2)i

=

6∑
k=1

dkgk
2

(1− gk2)2

6∑
k=1

gk
2

1− gk2

(25)

Based on the same assumption, it can be shown that the
central time of a series of filters is equal to the sum of the
central times of the filters. By using the definitions of the
clarity and the discrete temporal functions of the all-pass filter
in Eq. 12 and the low-pass filter in Eq. 9, their respective
central times can be deduced as shown in Eq. 26. Note that
since the gain factor of the low-pass filter has been fixed to
1√
2

, the central time of the low-pass filter is equal to da. Note
also that the central time is equal to 0 for the wet/dry gain



filter.

tCa =

∞∑
n=0

nAa2[n]

∞∑
n=0

Aa2[n]

=

∞∑
j=0

jda(ga
2)j+1

∞∑
j=0

(ga
2)j+1

=
daga

2

1− ga2
= da

tCc =

∞∑
n=0

nAc2[n]

∞∑
n=0

Ac2[n]

=

∞∑
l=0

l
1
fs

(1− gc)
2(gc

2)l

∞∑
l=0

(1− gc)
2(gc

2)l
=

1
fs

1
1− gc2

(26)
The central time of the whole reverberation unit is finally

estimated as the sum of the central times of the combination
of six parallel comb filters, the all-pass filter and the low-pass
filter, as shown in Eq. 27. Note that the central time is inde-
pendent of any gain amplitude. Note also that the last term
corresponding to the central time of the low-pass filter is very
small compared to the other terms and can be neglected.

TC =

6∑
k=1

dkgk
2

(1− gk2)2

6∑
k=1

gk
2

1− gk2

+ da +
1
fs

1
1− gc2

(27)

5.5. The Spectral Centroid

The Spectral Centroid, SC , is the center of gravity of the en-
ergy in the magnitude spectrum P of the impulse response
p, defined as follows in discrete time with the sampling fre-
quency fs by Eq. 28. Perceptually, it has a robust connection
with the impression of “brightness” of a sound [19].

SC =

fs/2∑
n=0

nP2[n]

fs/2∑
n=0

P2[n]

(28)

The true value of the spectral centroid of the reverberation
unit is measured from the magnitude of the impulse response
of the reverberation process, so without the direct sound at
time t = 0, by using the Eq. 28 above.

Although the comb filter has a non-flat magnitude fre-
quency response, with a sufficient number of comb filters in
parallel, with equal values of reverberation time, an approx-
imated flat frequency response can be achieved. Since the
all-pass filter has a flat magnitude frequency response, only
the low-pass filter is assumed to affect the frequency response
of the whole reverberation unit.

To estimate the spectral centroid directly from the param-
eters of the reverberator, the magnitude frequency response of

the low-pass filter is first computed from its transfer function
in Eq. 8, as shown in Eq. 29

Hc(n) = |Hc(ej2πn)| =
1− gc√

1 + gc2 − 2 gc cos(2πn)
(29)

The spectral centroid of the whole reverberation unit is
finally estimated using the definition of the spectral centroid
of Eq. 28 and the magnitude frequency response of Eq. 29 as
follows in Eq. 30. Note that gc is computed from fc so that
the spectral centroid is assumed to only depend on the cut-off
frequency parameter.

SC =

fs/2∑
n=0

n

1 + gc2 − 2 gc cos(2πn)
fs/2∑
n=0

1
1 + gc2 − 2 gc cos(2πn)

(30)

5.6. Summary

Five measures that characterize the reverberation effect have
been defined in terms of all the parameters of the reverbera-
tion unit. Recall that a set of five digital parameters has been
previously defined as controlling the whole reverberation unit.
The definitions of the five measures are then adapted accord-
ing to those five parameters.

The measures have been defined using the six delay and
six gain parameters of the comb filters. In practice, the re-
lationships between the delays and the gains of the comb fil-
ters defined in section 4.2 reduce these numbers to the two
parameters of the first comb filter, d1 and g1. Likewise, the
original fixed parameters of the all-pass filter, da and ga, have
been used to define the measures. In practice, the measures
are computed for the left channel, where the delay parame-
ters of the all-pass filter are d7 = da + m

2 and g7 = ga. The
delay difference parameter m between the all-pass filters at
each channel is estimated from d7. The parameters of the all-
pass filter for the right channel are then deduced as follows
d8 = da − m

2 and g8 = ga. Note that the cut-off frequency
fc and the wet/dry gain G are the same for each channel. Us-
ing Eq. 13, the cut-off frequency can be estimated from the
gain of the low-pass filter gc and the frequency sampling fs as

follows fc = fs
2π arccos

(
2− 1

2 (gc + 1
gc

)
)

.
There are in summary five measures-functions of five

parameters-variables:

1. T60(d1, g1, fc,G)

2. D(d1,m)

3. C(g1, fc,G)

4. TC(d1, g1,m, fc)

5. SC(fc)



State-of-art mentions other common measures used to
characterize reverberation, such as the Energy Decay Time,
defined as the total signal energy remaining in the reverber-
ator impulse response p at time t, or the Inter-Aural Cross
Correlation coefficient, which measures the difference in the
sounds arriving at the two channels. However, the Energy
Decay Time would have been a redundant measure since it
can be used in the definition of some of the measures de-
fined above, and the Inter-Aural Cross Correlation coefficient
would have been an inefficient measure when computed from
the impulse response. Besides, since five parameters have
been defined, a same number of measures, functions of those
parameters, seems more suitable for the computations.

Now all the perceptual measures of the reverberation ef-
fect are expressed as functions of the digital parameters of
the reverberator, the measures need to be mapped back to
the parameters so that the reverberation unit can be directly
controlled through the measures of the reverberation. Since
the functions are not all invertible, especially in d1 and g1,
and the map parameters-measures is not really bijective, when
needed, the parameters are estimated back from the measures
by simply using tables of possible values for the parameters
d1 and g1. Experiments show that the mapping original pa-
rameters to measures and then measures to estimated param-
eters gives really close values of parameters.

Finally, the reverberator can be controlled through the
measures of the reverberation. In the process, the five rever-
beration measures are mapped back to the five independent
parameters using the mapping described above. Then those
five parameters are used to identify all the parameters using
the relations defined in section 4.2. And those parameters are
finally used by the reverberation control to generate the de-
sired reverberation effect. Thus the reverberator can generate
a reverberation effect based on desired characteristics of the
reverberation itself.

6. CONCLUSION

A simple but efficient stereo reverberation control has been
developed to simulate reverberation. Inspired from previous
classic studies, the reverberator is built using simple digital
filters commonly used for simulating reverberation. A total of
21 digital parameters define the whole reverberation control.
Five measures commonly used to characterize reverberation
have been defined from the impulse response, and formulae
are derived to estimate values of these reverberation measures
in terms of the digital parameters for the reverberator.

Dependence relations between the digital parameters have
led to the need of only five independent parameters to control
the whole reverberator, so that the measures have been rede-
fined as five functions of five independent parameters. This
mapping parameters-measures is used to let the reverberator
to be controlled through the measures of the reverberation,
in other words the reverberator can generate a reverberation

effect based on desired characteristics of the reverberation it-
self.

This work was supported by NSF grant number IIS-
0757544.
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